

AFRL-MN-EG-TP-2007-7415

A C++ ARCHITECTURE FOR UNMANNED AERIAL VEHICLE
SIMULATIONS

Peter H. Zipfel
Air Force Research Laboratory
Munitions Directorate
AFRL/MNAL
Eglin AFB, FL 32542-6810

SEPTEMBER 2007

CONFERENCE PAPER AND BRIEFING CHARTS

This paper was presented at the AIAA InfoTech @ Aerospace Conference, 7-10
May 2007, Rohnert Park, CA. The paper will be published in the conference
proceedings. The author is a U.S. Government employee working within the
scope of his position. When published, AIAA may assert copyright. If so, the U.S.
Government has the right to copy, distribute, and use the work by or on behalf of
the U.S. Government. Any other form of use is subject to copyright restrictions.

This paper is published in the interest of the scientific and technical
information exchange. Publication of this paper does not constitute
approval or disapproval of the ideas or findings.

AIR FORCE RESEARCH LABORATORY, MUNITIONS DIRECTORATE

 United Air States Force Eglin Air Force Base

DISTRIBUTION A: Approved for public release; distribution unlimited.
Approval Confirmation #AAC/PA 04-04-07-236; dated 4 April 2007.

 Air Force Material Command

5(3257�'2&80(17$7,21�3$*()RUP�$SSURYHG

20%�1R�����������

����5(3257�'$7(��''�00�<<<<� ����5(3257�7<3(�

����7,7/(�$1'�68%7,7/(

�D���&2175$&7�180%(5

����$87+25�6�

����3(5)250,1*�25*$1,=$7,21�1$0(�6��$1'�$''5(66�(6�

����6321625,1*�021,725,1*�$*(1&<�1$0(�6��$1'�$''5(66�(6�

���3(5)250,1*�25*$1,=$7,21

����5(3257�180%(5

����6321625�021,725
6�$&521<0�6�

����6833/(0(17$5<�127(6

����',675,%87,21�9,/$%,/,7<�67$7(0(17

����$%675$&7

����68%-(&7�7(506

����180%(5

������2)�

������3$*(6

��D��1$0(�2)�5(63216,%/(�3(5621�

��D���5(3257

E��$%675$&7 F��7+,6�3$*(

����/,0,7$7,21�2)

������$%675$&7

6WDQGDUG�)RUP������5HY�������

3UHVFULEHG�E\�$16,�6WG��=�����

7KH�SXEOLF�UHSRUWLQJ�EXUGHQ�IRU�WKLV�FROOHFWLRQ�RI� LQIRUPDWLRQ�LV�HVWLPDWHG�WR�DYHUDJH���KRXU�SHU�UHVSRQVH�� LQFOXGLQJ�WKH�WLPH�IRU�UHYLHZLQJ�LQVWUXFWLRQV��VHDUFKLQJ�H[LVWLQJ�GDWD�VRXUFHV�

JDWKHULQJ�DQG�PDLQWDLQLQJ�WKH�GDWD�QHHGHG��DQG�FRPSOHWLQJ�DQG�UHYLHZLQJ�WKH�FROOHFWLRQ�RI�LQIRUPDWLRQ���6HQG�FRPPHQWV�UHJDUGLQJ�WKLV�EXUGHQ�HVWLPDWH�RU�DQ\�RWKHU�DVSHFW�RI�WKLV�FROOHFWLRQ

RI� LQIRUPDWLRQ�� LQFOXGLQJ� VXJJHVWLRQV� IRU� UHGXFLQJ� WKH� EXUGHQ�� WR� 'HSDUWPHQW� RI� 'HIHQVH�� :DVKLQJWRQ� +HDGTXDUWHUV� 6HUYLFHV�� 'LUHFWRUDWH� IRU� ,QIRUPDWLRQ� 2SHUDWLRQV� DQG� 5HSRUWV

������������������-HIIHUVRQ�'DYLV�+LJKZD\��6XLWH�������$UOLQJWRQ��9$���������������5HVSRQGHQWV�VKRXOG�EH�DZDUH�WKDW�QRWZLWKVWDQGLQJ�DQ\�RWKHU�SURYLVLRQ�RI�ODZ��QR�SHUVRQ�VKDOO�EH

VXEMHFW�WR�DQ\�SHQDOW\�IRU�IDLOLQJ�WR�FRPSO\�ZLWK�D�FROOHFWLRQ�RI�LQIRUPDWLRQ�LI�LW�GRHV�QRW�GLVSOD\�D�FXUUHQWO\�YDOLG�20%�FRQWURO�QXPEHU�

3/($6(�'2�127�5(7851�<285��)250�72�7+(�$%29(�$''5(66���

����'$7(6�&29(5('��)URP���7R�

�E���*5$17�180%(5

�F���352*5$0�(/(0(17�180%(5

�G���352-(&7�180%(5

�H���7$6.�180%(5

�I���:25.�81,7�180%(5

����6321625�021,725
6�5(3257�

������180%(5�6�

����6(&85,7<�&/$66,),&$7,21�2)�

��E��7(/(3+21(�180%(5��,QFOXGH�DUHD�FRGH�

 1

A C++ Architecture for Unmanned Aerial Vehicle Simulations

AIAA Infotech @ Aerospace 2007, 7-10 May 2007, Rohnert Park, CA

Peter H. Zipfel, Ph.D.
U.S. Air Force Research Laboratory

Eglin AFB, FL 32542

Abstract

The C++ computer language is well
suited to model multi-vehicle engagements. Its
prowess is exemplified by the conversion of a
unmanned aerial vehicle simulation from
FORTRAN to C++. The new architecture
accommodates besides UAVs and moving
targets also targeting satellites. Its class
structure is outlined, and the communication
bus between the encapsulated vehicle-objects
is discussed. A generic UAV model with five
degrees-of-freedom fidelity is used to
demonstrate the interactive features of the
simulation. Our experience has shown that
C++ is the programming environment of
choice for networked simulations.

Introduction

In today’s network-centric world,
aerospace vehicles interact with many objects.
They navigate by overhead satellites,
synchronize their flight paths with other
vehicles, swarm over hostile territory and attack
multiple targets. Studying these engagements has
become an important task of M&S. Engineers
and analysts are using many environments, from
the venerable FORTRAN language, the
symbolic translators like MATRIXX™,
MATLAB™, and VisSim™, to the newer
languages of C and C++. The multi-object
environment of network-centric engagements is
particularly well supported by the object oriented
computer language C++. Hence, we see with
increasing frequency conversions of legacy code
and new simulations coded in C++.

The Unmanned Aerial Vehicle (UAV)
simulation at the Air Force Research Lab was
converted from FORTRAN to a new C++
architecture, called CADAC++, which makes
possible multiple instantiation of UAVs, targets,
and satellites. This new capability enables the
study of fly-out trajectories, third party
targeting, and distributed information sharing.
The objective of this paper is to highlight the

simulation architecture and to present some
typical engagement scenarios.

The architecture is based on the
hierarchical structure of inherited classes. The
UAV, target, and satellite classes, inherit the
three degrees of freedom equations of motion
from the classes Round3, conveying the
spherical rotating Earth model. In turn, these
classes inherit the communication structure from
the base class Cadac. The components of the
vehicle, e.g., aerodynamics, propulsion, and
autopilot, are represented by modules, which are
member functions of the vehicle classes.
Communication among the modules occurs by
protected module-variable arrays. Every
instantiated vehicle object is encapsulated with
its methods and data. To communicate between
vehicles, data packets are loaded onto a global
data bus for recall by other vehicles. Input
occurs by ASCII file and output is compatible
with CADAC Studio, a plotting and data
processing package.

The UAV simulation is chiefly a
synthesis tool for refining the components of the
primary vehicle and exploring its performance as
it interacts with its environment. Its three
translational degrees of freedom are augmented
by pitch and bank angle dynamics (a so-called
pseudo 5 DoF simulation). Autopilot functions
are modeled by transfer functions, which
generate the inner-loop dynamics, while the
outer loop contains the navigation and guidance
functions. A terminal seeker guides the vehicles
into the target with proportional navigation.

The paper outlines the class structure
of the simulation, address the polymorphism that
creates the vehicle objects during run-time, and
explain the communication bus amongst the
objects. Key components of a generic UAV –
aerodynamics, propulsion, guidance and control
– are summarized, followed by trajectories plots
of UAVs, satellites, and targets.

Requirements

 2

CADAC++ is chiefly an engineering
tool aiding in the development of aerospace
vehicles. Though it focuses on the main vehicle
– UAV, aircraft, or missile – it also portrays the
interactions with outside elements, like satellites,
targets, and sister vehicles. The main vehicle is
modeled with greatest fidelity, while the
secondary objects have simpler representations.

The synthesis and conceptualization
process places distinct requirements on the
simulation architecture . To support the design
engineer in evaluating the aerodynamics,
propulsion, guidance and control components,
CADAC++ should mirror the same modular
structure and closely control the interfaces
between them. It should encapsulate each vehicle
object for multiple instantiation and provide
global communication between them. Input and
output must be flexible and compatible with
CADAC Studio, a post processing and analysis
tool. More specific requirements follow.

Face to the User
 The user likes to focus on the
evaluation of the main vehicle without being
burdened by the details of the simulation’s
execution. He wants control over the
input/output and the vehicle modules that code
the subsystems.
 There should be only one input file that
controls the simulation. It displays the run title,
an option line for directing the output, the calling
sequence of the modules, the sizing of the
integration step and output intervals, and the
initializing of the vehicle parameters. The
aerodynamic and propulsion tables should be
kept separate for safekeeping. Therefore, in the
input file, there would be only provided the files
name of the tables. Multiple instantiation of the
vehicle objects should be accomplished by
simply duplicating the vehicle data and possible
variations to the input parameters.
 The output control should be simple
yes/no choices. An option line would provide
output to the screen of the primary and
secondary vehicles together with the event
messages that indicate their changing flight
status. There should also be an option to archive
the screen output to a file. Plot files would be
written for individual vehicles and merged
together for multi-vehicle displays. These output
files should be compatible with CADAC Studio
for two and three dimensional plotting.
 The components of the vehicles should
be mirrored by modules containing code that

models their features. Strict control of the
interfaces will make the modules
interchangeable amongst simulations. The
modules should define these interface variables,
execute integration of state variables and enable
table look-up. Any vehicle changes that the user
has to make should be confined to these
modules.

Multiple Encapsulated Vehicle Object
 Each aerospace vehicle, be it UAV,
aircraft or missile, should be built up from a
hierarchy of classes, starting with the base class
Cadac, followed by the equations of motion,
and completed by the vehicle itself. Each vehicle
is a C++ object with its data (aerodynamics and
propulsion) and methods (modules)
encapsulated. Run-time polymorphism should be
used to sequence through the vehicles objects
during execution.

Modularity of Vehicle Components
 The modules, representing the vehicle
components, should be public member functions
of the vehicle classes. Their interfaces – the
module-variables – would be stored in protected
data arrays that are available to all modules of
the vehicle object. During execution, the
modules should define all module variables,
make initializations, integrate state variables, and
conduct post run calculations.

Event Scheduling
 Just as aerospace vehicles transition
though flight phases, the simulation should be
able to sequence through such events. These
events should be controlled by the input file
without any code changes in the modules.
Relational operators such as <, =, > would be
applied to the module-variables and trigger the
events.

Global Communication Bus
 Because vehicle objects are
encapsulated into classes, a global
communication bus should enable the transfer of
data. Each vehicle should be able to publish and
subscribe to any of the module-variables.

Table Look-up
 Table utilities should provide for one,
two, and three independent variable look-up.
Tables must be stored in separate files and
modifications easily accomplished. Simple

 3

syntax should make the table look-up easy to
program in the modules.

Matrix Utility Operations
 The full power of C++ should be
applied to matrix operations. Matrix utilities
should be tailored to the specific needs of flight
simulations and not burdened by C++ container
classes. Efficient pointer arithmetic will speed up
the execution and will allow unlimited
sequencing of matrix operations.

Documentation and Error Checking
 The module-variables, being the key
interfaces between the modules, should be
completely documented. Their definitions,
provided in the modules, should be collected in
a single output file. The module-variables in the
input file should also be documented with the
same definitions.
 Error checking should identify module-
variables that have not been assigned the correct
names or locations in the input file or the
modules. Incompatible matrix operations should
be flagged, as well as problems with opening of
file streams.

Architecture

All these requirements can be satisfied
with object oriented programming in C++.
Hierarchical class structures, encapsulation of
data and methods, run-time polymorphism,
overloading of functions and operators, are all
features used in CADAC++ to build a simulation
environment suitable for flight vehicle synthesis.

CADAC++ programming follows
strictly the International Standard for C++,
defined by the ANSI/ISO Committee in 1998
and implemented by most compilers like
Microsoft Visual C++. Thus portability is
assured and low cost operation is made possible.

Each requirement is now addressed
separately with particular focus on the classes
that structure the features of CADAC++, see
Fig. 1

CLASS DESCRIPTION
Cadac, ... Hierarchical class structure of

vehicles
Vehicle Hosting a pointer array of type

Cadac
Module Storing module information

Variable Declaring module-variables
Event Storing event information
Packet Declaring data packets for global

communication bus
Datadeck Hosting a pointer array of type

Table
Table Storing tabular data
Matrix Storing matrix operations
Documen
t

Storing module-variable
definitions

Fig. 1 CADAC++ Classes

Multiple Encapsulated Vehicle Object
The rewriting of CADAC was

motivated by the unique feature of C++ allowing
encapsulation of vehicle objects. Encapsulation
means binding together data and functions and
restricting their access. The aerodynamic and
propulsion data are bound together with the table
look-up functions and many other functions that
support the missile and aircraft objects. In turn,
these objects are created from a hierarchical
class structure derived from the common base
class Cadac.

 This hierarchical class structure in
CADAC depends on the particular simulation.
For instance, the UAV simulation consists of
three branches Cadac ← Round3 ←
Cruise, Cadac ← Round3 ←
Satellite, and Cadac ← Round3 ←
Satellite, , where Round3 models the
equations of motions over the spherical Earth,
and Cruise, Target, and Satellite
modes the components of the vehicles.

The vehicle objects, declared by their
respective classes, are created during run-time by
the polymorphism capability of C++.
Polymorphism – many forms, one interface –
uses inheritance and virtual functions to build
one vehicle-list of all vehicle objects, be they
UAVs, targets, or satellites. At execution, this
vehicle-list is cycled through each integration
step in order to compute the respective vehicle
parameters.
 Through run-time polymorphism any
number of different vehicles can be called using
the common pointer array of type Cadac. These
calls are executed during initialization and at
every integration step. A limitation of this
architecture is that all vehicle objects have to be
instantiated at the beginning of the run.

 4

Modularity of Vehicle Components

A key feature of CADAC is its
modularity, reflecting the component structure of
an aerospace vehicle. Just as the hardware is
divided into subsystems like propulsion,
autopilot, guidance, and control, so is the
CADAC simulation broken into propulsion
module, autopilot module, etc., and the more
esoteric modules like aerodynamics, Newton’s
equations of motions, and environment. This
one-for-one correspondence ensures clean
interfaces between the modules.

Each module is a pure virtual member
function of the abstract base class Cadac and is
overridden in the derived class, be it Round3,
Cruise, Target, or Satellite. If the
derived class does not use a module, the module
will return without code.

The calling sequence of the modules is
controlled by their sequential listing in the input
file input.asc. Each module may consist of
four parts: the definition part identified by def,
the initialization part, init, the execution part,
exec, and the last call, term. All but the
exec part are called only once, exec is called
every integration step.

Module-variables provide the sole data
transfer between the modules of a vehicle object.
For documentation they are recorded in
sequential order in doc.asc with their
definitions and other relevant information.
Between their label and array location, there is a
unique one-on-one relationship. Any deviation
from that rule is flagged in doc.asc.

Event Scheduling

As aerospace vehicles fly their
trajectories, they may sequence through several
events towards their destinations. Just think of
rockets staging; airplanes taking off, cruising
and landing; and missiles passing through
midcourse and terminal phases towards the
intercept. Events in CADAC++ are interruptions
of the trajectory for the purpose of reading new
values of module-variables. They can only be
scheduled for the main vehicle object. The
maximum number of events is determined by the
global integer NEVENT, while the number of
new module-variables in each event is limited by
the global integer NVAR.

An event is defined in the input file
input.asc by the event block starting and
ending with the key words IF … ENDIF.

Appended to IF is the event criterion. It consists
of the watch variable – any module-variable,
except of type Matrix – and a relational operator
followed by a numerical value. For instance,
IF dbt < 8000
 mseek 2
ENDIF
meaning, if the range to the target is less than
8000 m, the seeker is enabled (mseek=2). The
supported relational operators are <, =, >.
 The Event class supports the creation
of Event type objects. The private members of
the Event class store information about the
event, such as watch variable, relational
operator, threshold value, and new module-
variables. The public methods are set and get
functions for the data. To expedite execution, the
new module-variables are not stored by their
name, but by their offset index in the module-
variable array. Therefore, rather than cycling
through all the module-variables, the new
module-variables are directly picked out by their
offset indices. These index lists are also part of
the private data members of Event.
 Event scheduling gives great flexibility
to shaping the trajectory of an aerospace vehicle.
However, as a design matures and the switching
logic becomes well defined, the events can be
scheduled in the module itself, and any event
scheduling in the input.asc file may be
completely eliminated.

Global Communication Bus
 Encapsulation by classes isolates
vehicles objects from each other. This great
feature of C++, however, prevents direct
communication between the vehicles. For
instance, the missile object needs to know the
coordinates of the target object in order for its
seeker to track it. How can the missile get access
to the protected target data?
 In CADAC++ the global
communication bus, called combus, provides
this interface. Selected module-variables are
stored in combus so that other vehicles can
download them. To identify this process we
borrow the terms ‘publish’ and ‘subscribe’
from HLA (High Level Architecture).
 The enabling global class is Packet,
which, as a private data member, stores the
vehicle ID, the status of the vehicle (alive, hit,
dead), the number of module-variables in the

 5

data set, and a pointer to the array of module-
variables of type Variable. Each vehicle
object contributes one packet to the
communication array combus of type Packet.
The slot # is the same as that of the vehicle in the
vehicle_list.

Each packet has a data set of module
variables stored in the array, pointed to by
Variable *data. The storage sequence in
the data set is in the order the module-variables
are read, which is given by the module sequence
in the input file input.asc. This sequence is
important for the subscription process.
 The subscription of module-variables
occurs in the modules. For instance, the seeker in
order to track the target has to subscribe to the
target coordinates. First, the target ID is built
from the string “t” and the tail number of the
target. Then combus is searched for this packet
and the data set is downloaded
 The number of module-variables in the
data set is unrestricted. If you are unsure of the
storage sequence, you can find it by selecting
y_comscrn and counting the labels, just make
sure that you count the three components of
vectors as one label only.

Table Look-up

Interpolating aerodynamic and
propulsion tables is an important task in any
aerospace simulation. Aerodynamic coefficients
are usually given as functions of incidence
angles and Mach number; sometimes also as a
function of altitude and control surface
deflections. Propulsion data are tailored to the
type of propulsion system. For rocket motors,
simple thrust tables may suffice, while turbojet
and ramjet engines depend on throttle, Mach
number, and, for more accurate models, even on
incidence angles.

 The more independent variables are
included, the higher the complexity of the table.
Seldom, however, is the dimension higher than
three – dictated by runtime considerations.
CADAC++ supports table look-up schemes up
to third dimension and interpolates linearly
between the discrete table entries. It keeps the
so-called ‘data decks’ as separate files, so they
can be properly protected, as the need may arise.
If any changes have to be made – adding or
deleting tables – they are absorbed
automatically.

The handling of the tables is
accomplished by the two classes: Datadeck
and Table. The class Datadeck has a private
member **table_ptr, which is a pointer to
an array of pointers of the class Table that
contains the pointers to all the tables of a data
deck, be it the aerodynamics or propulsion deck.
Under the ‘main vehicle’ scope, inside the
‘protected’ access specifier, the objects
Datadeck aerotable and Datadeck
proptable are declared, and also the table
pointer Table *table. At execution, two
distinct phases take place: loading the tables and
extracting the interpolated value.
 Additions and deletions of tables in the
AERO_DECK or PROP_DECK are
automatically adjusted during the loading of the
tables. If a simulation requires data tables of a
different type – e.g., antenna pattern – , one has
to do four things: (1) create an ASCII file with
the data tables, (2) identify the file name by a
key word – ANT_DECK antenna_data.asc
– in the input.asc file, (3) declare an
additional Datadeck object in the ‘main
vehicle’ class – antennatable –, and (4)
replicate in the function input_data(…) a
third block for the new key word.

Matrix Utility Operations

Modern programming makes use of
matrix operations as much as possible. It
condenses code and avoids errors caused by
coordinating equations. CADAC++ has a rich set
of matrix operations, which are public members
of the class Matrix. This class is tailored to the
special needs of flight dynamics. Generality has
been sacrificed for efficiency. Rather than using
template classes and particularly the vector
container class of the STL, the CADAC++
matrix operations are restricted to variables of
type double.
 The Matrix class declares a private
pointer to the matrix array double *pbody;
together with the array dimensions. There are 48
matrix operations declared in the public access
area. They can be divided into 30 functions and
18 overloaded operators.

The matrix utilities have a full suit of
overloaded operators. The assignment operator
requires a copy constructor to provide for a
deep copy of the object to assure that the new
object has its own memory allocated, and that it
is recoverable when the object is destroyed.

 6

The offset operator [] is also overloaded to
access the elements of a Matrix array.
However, this works only for one-dimensional
arrays, because two-dimensional arrays require
more than one offset operator. For those, the
Matrix functions assign_loc(..) and
get_loc(…) must be used.

Documentation and Error Checking

Self-documentation is an essential part
of any simulation. Of primary interest are the
variables that are used for input/output, as
interfaces between modules, and those of
particular interest for diagnostics. All are
referred to as module-variables. The description
of a module-variable occurs only once, in the
‘def_module’ function. This description is used
to document the input file input.asc and to
create a list of all module-variables in the output
file doc.asc. The documentation of
input.asc is automatic, while the doc.asc
file is only created if the OPTION y_doc is
selected.

Error checking focuses in particular on
the correct formatting of the input.asc file
and the enforcement of the one-on-one
correspondence rule: “One module-variable
name for one array location”. Other checks
assure that matrix operations are performed on
compatible matrices and that file streams open
correctly.

The class Document is used to make
the module-variable descriptions available. Its
private data are essentially a subset of the class
Variable. They store name, type, definition
and module of each module-variable.

During initialization, a check is made
whether that slot is empty and can receive a new
variable. If not, the error code ‘*’ is set. As the
function document() writes the output file
doc.asc, the module-variable array is
checked for duplicate names. The error code ‘A’
is set if this occurs. Both codes are inserted in
the first column of the doc.asc file and a
warning message is sent to the console.

A good description of a particular
simulation is produced if the modules, the
input.asc, and the doc.asc files are
collected in a document. It should enable
someone else, who is familiar with the
CADAC++ framework, to pick up, run, and
understand the simulation.

Aerial Vehicle Model

The generic UAV that is used in the
simulation is shown in Fig. 2

Fig. 2 Layout of UAV

It’s aerodynamics is obtained from DATCOM
and modeled as drag polars, see Fig. 3

 Fig. 3 Drag polar

The propulsion data reflect a typical turbojet
with data tables as shown in Fig. 4

Dimensions in cm

• Thrust available = fct (Mach, alt)

• Fuel flow = fct (Mach, Alt)

• Idle thrust = fct (Mach, alt)

• Idle fuel flow = fct (Mach, alt)

Fig. 4 Propulsion data

 7

A typical thrust available diagram is shown in
Fig. 5

Fig. 5 Thrust available for altitudes 0, 1524,
and 3048 m

During cruise the UAV must be able to maintain
constant speed, so a Mach hold controller is
implemented as shown in Fig. 6

Fig. 6 Mach hold controller

 The autopilot consists of multiple
controllers. The autopilot location is shown in the
block diagram of Fig. 7.

Fig. 7 Autopilot

To serve all the flight phases it must have several
modes as summarized in Fig. 8

The UAV steers from waypoint to waypoint using
onboard guidance, see Fig. 9

Fig. 9 Guidance

Besides waypoint guidance, the UAV also has the
capability to attack a target either using its on-board
seeker, or obtaining the target coordinates from
satellites.

Airframe

Sensors

Autopilot

INNER LOOP

Command

Feedback

1
1
+sTF

Thrust Available

0
500

1000
1500
2000
2500

0.4 0.55 0.7 0.85

Mach #

Th
ru

st
 -

N

• Bank angle control
• Flight path angle control
• Heading control
• Normal acceleration control
• Lateral acceleration control
• Altitude control

Fig. 8 Autopilot modes

 8

Engagement Scenarios

Three scenarios demonstrate the capability of the UAV netcentric simulation. The first scenario,

Fig. 10, depicts a UAV flying through three waypoints approaching the target area and homing into the
target autonomously with its on-board seeker.

Fig. 10 One-on-one engagement with terminal seeker guidance

In the simulation, the coordinates of the target are published to the combus communication bus

and subscribed by the UAV. Thus the seeker is pointed at the target and can provide the line-of-sight rates
to the guidance computer for an intercept.

0

2.00

4.00

6.00

8.00

35.3

35.4

35.514.6 14.8 15.0
15.2 15.4

Longitude - deg

Latitude - deg

Altitude - km

input.asc: UAV Cruise and Target Attack Dec 11 2006 09:29:05

•Waypoint # 1

2

Target

•
Launch

•
•

3

N

0 100 200 300 400
Time - sec

0
2.

00
4.

00
6.

00
8.

00
A

lti
tu

de
 -

m
e

+3
64

0
68

0
72

0
76

0
80

0
84

0
M

ac
h

#
e

-3

10
.0

15
.0

20
.0

25
.0

30
.0

35
.0

40
.0

D
yn

am
ic

 p
re

ss
ur

e
- P

a
e

+3

0 100 200 300 400
Time - sec-1

0.
00

-5
.0

0
0

5.
00

10
.0

15
.0

A
ng

le
 o

f a
tta

ck
 -

de
g

-8
0.

0
-4

0.
0

0
40

.0
80

.0
B

an
k

an
gl

e
- d

eg
0

0.
40

0.
80

1.
20

1.
60

Th
ru

st
 -

N
e

+3

input.asc: UAV Cruise and Target Attack ' UAV ' Dec 11 2006 09:29:06

WP # 1 WP # 2

WP # 3

Launch Mach 0.6, 7000m
Cruise Mach 0.7
 After WP #1 descend to 5000 m
 After WP #2 descend to 2000 m
 After WP #3 descend to target
Terminal homing to target

Two-vehicle Simulation
1 UAV
1 Target

 9

In the second scenario, Fig. 11, instead of the seeker guiding the vehicle, the target coordinates are

sent by an overhead satellite to the UAV for tracking.

Fig. 11 One-on-one engagement with satellite targeting

In this engagement there are three vehicle objects active. The UAV approaches the target area via

waypoints, while the overhead satellite tracks the moving target on the ground and relays the target
coordinates to the UAV guidance processor.

In the simulation, all three vehicle objects publish their coordinates to combus. They are used to
make visibility calculations, i.e., can the satellite see the target and is there a clear line-of-sight to the UAV
for broadcasting the target coordinates. If affirmative, the UAV subscribes to the target coordinates from
combus and makes the intercept.

0 100 200 300 400 500
Time - sec

0
2.

00
4.

00
6.

00
8.

00
Al

tit
ud

e
- m

e
+3

50
0

60
0

70
0

80
0

90
0

M
ac

h
#

e
-3

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

D
yn

am
ic

 p
re

ss
ur

e
- P

a
e

+3

0 100 200 300 400 500
Time - sec-1

0.
00

-5
.0

0
0

5.
00

10
.0

15
.0

An
gl

e
of

 a
tta

ck
 -

de
g

-8
0.

0
-4

0.
0

0
40

.0
80

.0
Ba

nk
 a

ng
le

 -
de

g
-6

0.
0

-4
0.

0
-2

0.
0

0
20

.0
Fl

ig
ht

 p
at

h
an

gl
e

- d
eg

input8_1.asc: UAV Cruise and Target Attack ' UAV ' Mar 12 2007 13:19:02

+30

+50

+10

+30

+50

+70

+90

+70

+90

input8_1.asc: UAV Cruise and Target Attack Mar 12 2007 13:19:00

Target area

Satellite at
500 km
altitude

Three-vehicle Simulation
1 UAV
1 Target
1 Satellite

 10

In the third scenario, Fig. 12, nine vehicle-objects are simulated. The three UAVs attack three
targets, while three satellites orbit the Earth. Two of the UAVs are guided by their on-board seeker, while
the third one receives targets coordinates from Satellite #1 that is closest to the target area.

Fig. 12 Three-on-three engagement with seeker and satellite targeting

In the simulation, combus keeps track of nine vehicle-objects. Line-of-sight calculations are

carried out and the three UAVs subscribe to three target coordinates for intercept either with their onboard
seeker or by using the satellite supplied target coordinates.

Conclusions

 The conversion of the CADAC unmanned aerial vehicle simulation from FORTRAN to C++ has been
completed successfully. What used to be a one-on-one simulation has now become a multiple engagement
simulation thanks to object oriented paradigm of C++. Our experience has shown that C++ is the
programming environment of choice for networked simulations, outperforming Matlab/Simulink-based
simulations in programming, execution speed, and cost.

0
2.00
4.00

35.4

35.5

35.6

35.7

35.8

14.0
14.2 14.4

14.6
14.8

15.0
15.2

Longitude - deg

Latitude - deg

Altitude - km

input8_1_3.asc: Three UAVs, three targets, and three satellites Mar 15 2007 14:49:12

Tgt #1

Tgt #3

Tgt #2

Launch

UAV #1

2

UAV #3

-110

-90

-70

-50 -30
-10

+10

+30

+50

-30

-10

+10

+30

+50

+70

+90

+50
+70

+90

input8_1_3.asc: Three UAVs, three targets, and three satellites Mar 15 2007 14:49:12

Target area

Sat #1

Sat #2

Sat #3

Nine-vehicle Simulation
3 UAV
3 Target
3 Satellite

UAV #1 & #2 seeker guided
UAV #3 satellite targeted

Air Force Research Laboratory

A C++ Architecture for Unmanned
Aerial Vehicle Simulations

DISTRIBUTION A. Approved for public
release; distribution unlimited.

AIAA Infotech @ Aerospace 2007, 7-10 May 2007, Rohnert Park, CA

Peter H Zipfel, Ph.D.
zipfel@eglin.af.mil

20 March 2007 C++ Architecture for UAV Simulations 2

Air Force Research Laboratory

Overview

• Requirements for a Netcentric Simulation
• UAV Netcentric Simulation
• CADAC++ Class Structure
• Class Hierarchy of UAV Simulation

– Implementation of Run-Time Polymorphism
– CADAC Modularity
– Event Scheduling
– Global Communication Bus
– Matrix Utility Operations
– Documentation and Error Checking

• UAV with Waypoint Navigation and Seeker Homing
• UAV Receiving Target Coordinates from Satellite
• Netcentric Engagement
• Summary

20 March 2007 C++ Architecture for UAV Simulations 3

Air Force Research Laboratory

Requirements for a Netcentric Simulation
• Synthesis capability for multi-vehicle environments

– Higher fidelity simulation of main vehicle
– Lower fidelity for supporting vehicles

• Encapsulation of vehicles for multiple instantiation
– Binding data and functions and restricting their access

• Modular structure to mirror the vehicle’s components
– Strict interface control
– Re-use of code

• Event scheduling
– Simulating the phases of flight

• Global communication bus
– Data flow between encapsulated objects

• Table look-up
– 1, 2, 3 – dimensional
– Data decks separated for safekeeping

• Matrix utility operations
– Combining matrix operations like scalars

• Documentation and error checking
– Documenting all interface variables
– Checking interface variables, matrix compatibility, and file streams
– Output compatible with CADAC-Studio ♣

20 March 2007 C++ Architecture for UAV Simulations 4

Air Force Research Laboratory

CADAC++ UAV Simulation

• 5 DoF spherical rotating Earth
– UAV

• 3 translational DoF
• 2 rotational DoF: pitch and bank

– Target
• Moving on ground

– Satellite
• UAV

– Aerodynamics
• Trimmed
• Drag polar function of Mach

– Propulsion
• Turbojet
• Mach controller

– Flight controllers
• Bank angle
• Flight path angle
• Heading
• Altitude
• Acceleration

– Guidance
• Waypoint

– Point
– Line
– Arc

• Terminal
– Pro-nav
– Line guidnce

– Seeker
• Simple line-of sight

– Satellite targeting ♣

Compatibility
Microsoft Visual C++ 8

CADAC Studio plotting (IBM PC, Windows)

20 March 2007 C++ Architecture for UAV Simulations 5

Air Force Research Laboratory

CADAC++ Class Structure

 CLASS DESCRIPTION
Cadac, ... Abstract base class of hierarchical structure
Vehicle Hosting a pointer array of type Cadac
Module Storing module information
Variable Declaring module-variables
Event Storing event information
Packet Declaring data packets for global communication bus
Datadeck Hosting a pointer array of type Table
Table Storing tabular data
Matrix Storing matrix operations
Document Storing module-variable definitions

♣

20 March 2007 C++ Architecture for UAV Simulations 6

Air Force Research Laboratory

Class Hierarchy of UAV Simulation

newton ()
environment ()

Virtual functions

aerodynamics ()
propulsion ()
forces ()
targeting ()
seeker ()
guidance ()
control ()
intercept ()

Virtual functions

Cadac

Round3

Target Cruise Satellite

round3 []

cruise []target [] Module-Variable arrayssatellite []

Vehicle-objects TARGET3 CRUISE3 SATELLITE3

Communication bus combus []

Abstract base class

Derived class

Derived class

H
ie

ra
rc

hy

aerodynamics

environment

propulsion

forces newton

targetingseekerguidance

control

intercept

Modular Structure

♣

20 March 2007 C++ Architecture for UAV Simulations 7

Air Force Research Laboratory

Implementation of Run-Time Polymorphism

CLASSES

Table

Packet

Datadeck

Event

Variable

Module

Vehicle

Matrix

Document

Cadac, ...

• All vehicle objects are stored in a pointer array vehicle_ptr of
type Cadac

1. Create Vehicle vehicle_list which has as private member the
pointer array Cadac **vehicle_ptr

2. From ‘input.asc’ read the number and type of vehicle objects
3. Add the vehicle pointers to vehicle_ptr array in the order read

from ‘input.asc’
• During run-time the vehicle objects are accessed by their pointers

– The class ‘Vehicle’ declares an overloaded offset operator
Cadac *operator[] that returns the vehicle pointer

– The vehicle pointer is of the correct vehicle type (e.g., Cruise,
Target, Satellite) although it is stored in the pointer array of type
Cadac (polymorphism)

4. With this vehicle-pointer access the member functions of the respective
vehicle

– Example: At every integration step the ‘newton’ module of the i-th
vehicle is called

vehicle_list[i]->newton(int_step); ♣

20 March 2007 C++ Architecture for UAV Simulations 8

Air Force Research Laboratory

CADAC Modularity

CLASSES

Table

Packet

Datadeck

Event

Variable

Module

Vehicle

Cadac, ...

Matrix

Document

• CADAC’s modular structure mirrors the hardware components of
an aerospace vehicle

– A module is a model of a vehicle component
• Examples: aerodynamics, propulsion, actuator, guidance, control,…

– Each module consists of at least two functions and not more than four
• def_module(), init_module(), module(), term_module()

• The calling order of the module is controlled by the input file
• Data between modules is transferred by module-variables

– Module-variables, being the only allowed interface, are strictly controlled
– Each vehicle object reserves protected arrays for its module-variables
– There is a one-to-one relationship between the module-variable name and

the array location
– The file doc.asc documents all module-variables

• Module-variables can be of type int, double, 3x1 vector, and 3x3
matrix

• Inside a module
– Module-variables are localized for input
– Computations create other module-variables
– These are loaded onto the object’s array for output ♣

20 March 2007 C++ Architecture for UAV Simulations 9

Air Force Research Laboratory

Event Scheduling

CLASSES

Table

Packet

Datadeck

Event

Variable

Module

Vehicle

Cadac, ...

Matrix

Document

• Vehicle trajectories are divided into phases initiated by events
– Take-off, cruise, landing
– Autopilot command changes
– Guidance mode changes

• Events in CADAC++ are interruptions of the trajectory for the
purpose of reading new module-variables

– Global dimensioning of events
• NEVENT = maximum number of events
• NVAR = maximum number of module-variables in each event

• Events are introduced in the input file ‘input.asc’
– Event block

– IF watch_variable_name relational_operator value
» new module-variables

– ENDIF

– Supported relational operators < , = , >
– Example: After 5 sec, altitude command is changed to 5000 m

IF time > 5
altcom 5000 //Altitude command - m module control

ENDIF
♣

20 March 2007 C++ Architecture for UAV Simulations 10

Air Force Research Laboratory

Global Communication Bus

CLASSES

Table

Datadeck

Event

Variable

Module

Vehicle

Cadac, ...

Packet

Matrix

Document

• Encapsulation of vehicle-objects prevents direct data exchange
• The communication bus combus gives global access to the module-

variables of all vehicle-objects
• Building the communication bus

– Module-variables are flagged by the keyword “com”
flat6[56].init("vmach",0,"Mach number","environment","out","scrn,plot,com");

– Every vehicle-object publishes (loads) a packet of “com” –variables
– The packets are stored in the array combus of type Packet

• Using the communication bus
– The communication bus can be used by any vehicle-object
– A vehicle-object subscribes (downloads) to the variables it needs from the

other vehicle-objects
– Example: UAV downloads the position of the target it attacks

• Characteristics of combus
– It is an array of type Packet of size equal to the number of vehicle-

objects
– The slot # of a vehicle in combus[] is the same as in vehicle_list[]

♣

20 March 2007 C++ Architecture for UAV Simulations 11

Air Force Research Laboratory

Matrix Utility Operations

CLASSES

Table

Packet

Datadeck

Event

Variable

Module

Vehicle

Cadac, ...

Matrix

Document

• Source code should be programmed in matrices as much as possible
– Compact code
– Avoids errors

• Requirements of flight simulations
– Mostly 3x1 and 3x3 matrices, some of higher dimensions (Kalman filters)
– Elements of matrices are of type double

• Class Matrix instantiate a pointer to the matrix *pbody and
initializes the elements to zero

• Examples from module Target::forces()
//Coriolis acceleration in V-coordinates
WEIG=TGE*WEII*TEG;
CORIO_V=TVG*WEIG*VBEG*2;
//centrifugal acceleration in V-coordinates
CENTR_V=TVG*WEIG*WEIG*TGI*SBII;

• Special features
– All matrix manipulations are carried out in pointer arithmetic
– Creating a matrix (other than instantiation) returns *this, the re-

created object
– Copy constructor for the matrix assignment operator
– Overloaded offset operator [] ♣

20 March 2007 C++ Architecture for UAV Simulations 12

Air Force Research Laboratory

Documentation and Error Checking

• Emphasis is on documenting module-variables. They govern:
– Input/output
– Data transfer between modules
– Special diagnostic needs

• ‘One definition – multiple use’ principle
– Module-variables are described in the modules
– Their description is used in the input.asc file
– All descriptions are collected in the doc.asc file

• Class Document enables the sharing of the descriptions
• Error checking

– Matrix compatibility
– File stream opening
– Violations of the ‘one-on-one correspondence’ rule

• One module-variable name for one array location

• Documentation package for a simulation
– Modules
– input.asc
– doc.asc ♣

CLASSES

Table

Packet

Datadeck

Event

Variable

Module

Vehicle

Cadac, ...

Matrix

Document

20 March 2007 C++ Architecture for UAV Simulations 13

Air Force Research Laboratory

Input/Output of CRUISE

CADAC++ Frame

UAV

CADAC Studio

plot.asc

plot1.asc

plot2.asc

plotn.asc

.

.

.

traj.asc

tabout.asc

input.asc

aero_deck.asc

prop_deck.asc
CADAC++ Frame

UAV

CADAC++ Frame

UAV

CADAC StudioCADAC Studio

plot.asc

plot1.asc

plot2.asc

plotn.asc

.

.

.
plot.ascplot.asc

plot1.asc

plot2.asc

plotn.asc

.

.

.

plot1.asc

plot2.asc

plotn.asc

.

.

.

plot1.asc

plot2.asc

plotn.asc

.

.

.

traj.asctraj.asc

tabout.asctabout.asc

input.asc

aero_deck.asc

prop_deck.asc

input.asc

aero_deck.asc

prop_deck.asc

♣

20 March 2007 C++ Architecture for UAV Simulations 14

Air Force Research Laboratory

UAV with Waypoint Navigation and Seeker Homing

♣

0

2.00

4.00

6.00

8.00

35.3

35.4

35.514.6 14.8 15.0
15.2 15.4

Longitude - deg

Latitude - deg

Altitude - km

input.asc: UAV Cruise and Target Attack Dec 11 2006 09:29:05

•Waypoint # 1

2

Target

•
Launch

•
•

3

N

0 100 200 300 400
Time - sec

0
2.

00
4.

00
6.

00
8.

00
Al

tit
ud

e
- m

e
+3

64
0

68
0

72
0

76
0

80
0

84
0

M
ac

h
#

e
-3

10
.0

15
.0

20
.0

25
.0

30
.0

35
.0

40
.0

D
yn

am
ic

 p
re

ss
ur

e
- P

a
e

+3

0 100 200 300 400
Time - sec-1

0.
00

-5
.0

0
0

5.
00

10
.0

15
.0

An
gl

e
of

 a
tta

ck
 -

de
g

-8
0.

0
-4

0.
0

0
40

.0
80

.0
Ba

nk
 a

ng
le

 -
de

g
0

0.
40

0.
80

1.
20

1.
60

Th
ru

st
 -

N
e

+3

input.asc: UAV Cruise and Target Attack ' UAV ' Dec 11 2006 09:29:06

WP # 1 WP # 2

WP # 3

Launch Mach 0.6, 7000m
Cruise Mach 0.7

After WP #1 descend to 5000 m
After WP #2 descend to 2000 m
After WP #3 descend to target

Terminal homing to target

Two-vehicle Simulation
1 UAV

1 Target

20 March 2007 C++ Architecture for UAV Simulations 15

Air Force Research Laboratory

UAV Receiving Target Coordinates from Satellite

0 100 200 300 400 500
Time - sec

0
2.

00
4.

00
6.

00
8.

00
A

lti
tu

de
 -

m
e

+3
50

0
60

0
70

0
80

0
90

0
M

ac
h

#
e

-3
10

.0
20

.0
30

.0
40

.0
50

.0
60

.0
D

yn
am

ic
 p

re
ss

ur
e

- P
a

e
+3

0 100 200 300 400 500
Time - sec-1

0.
00

-5
.0

0
0

5.
00

10
.0

15
.0

A
ng

le
 o

f a
tta

ck
 -

de
g

-8
0.

0
-4

0.
0

0
40

.0
80

.0
B

an
k

an
gl

e
- d

eg
-6

0.
0

-4
0.

0
-2

0.
0

0
20

.0
Fl

ig
ht

 p
at

h
an

gl
e

- d
eg

input8_1.asc: UAV Cruise and Target Attack ' UAV ' Mar 12 2007 13:19:02

+30

+50

+10

+30

+50

+70

+90

+70

+90

input8_1.asc: UAV Cruise and Target Attack Mar 12 2007 13:19:00

Target area

Satellite at
500 km
altitude

• Seeker guidance replaced by
satellite targeting

Three-vehicle Simulation
1 UAV

1 Target

1 Satellite

♣

20 March 2007 C++ Architecture for UAV Simulations 16

Air Force Research Laboratory

0
2.00
4.00

35.4

35.5

35.6

35.7

35.8

14.0
14.2 14.4

14.6
14.8

15.0
15.2

Longitude - deg

Latitude - deg

Altitude - km

input8_1_3.asc: Three UAVs, three targets, and three satellites Mar 15 2007 14:49:12

Tgt #1

Tgt #3

Tgt #2

Launch

UAV #1

2

UAV #3

Netcentric Engagement

-110

-90

-70

-50 -30
-10

+10

+30

+50

-30

-10

+10

+30

+50

+70

+90

+50
+70

+90

input8_1_3.asc: Three UAVs, three targets, and three satellites Mar 15 2007 14:49:12

Target area

Sat #1

Sat #2

Sat #3

Nine-vehicle Simulation
3 UAV

3 Target

3 Satellite

UAV #1 & #2 seeker guided
UAV #3 satellite targeted

♣

20 March 2007 C++ Architecture for UAV Simulations 17

Air Force Research Laboratory

Other Architectures
• ENGAGE++ 3 DoF air-to-air engagement simulation

– Air Force Research Lab

– GUI directed

– Partial hierarchical class structure, no abstract base class

• JSBSim FlightGear simulator

– Jon S. Berndt

– Embedded in real time simulator
– Partial hierarchical class structure, no abstract base class

• CMD C++ Model Developer of dynamic systems

– Army Research Development and Engineering Command

– User directed

– Abstract base class hierarchy ♣

20 March 2007 C++ Architecture for UAV Simulations 18

Air Force Research Laboratory

Comparison

Derived classesDerived classes Derived classes Class functionsComponents

Data files passing values to
constructorsXML script filesGUI Data decks, input fileData

User suppliedConsole, plot filesLaunch envelopes,
trajectoriesConsole, plot filesOutput

Constructors Set and get methods from
input filesGUIInput data and

initialization by ASCII fileInput

User suppliedJSBSim.cppNot foundexecute.cppmain()

User supplied stage vector
with criteria

In-line ‘switch’ functionsGUI directed, in-line
implementation

By input file, frame
implementationEvents

Central integration in
kernelIn-line integrationCentral integration of

public variablesIn-line integrationStates

Constructors and get/set
methods

Get and set methods for
private/protected data

Parameter lists and public
members

Protected data array,
CombusInterface

Abstract base class
hierarchy

Partial hierarchical
structure

Partial hierarchical
structure

Abstract base class
hierarchy

Class
Structure

Differential equation
solver, batch & realtime

Aircraft 6 DoF simulator,
batch & realtime

3 DoF air-to-air
engagements, batch GUI

Many aerospace
environments, batch Purpose

CMDJSBSimENGAGE++CADAC++

20 March 2007 C++ Architecture for UAV Simulations 19

Air Force Research Laboratory

Summary

• Object oriented programming (OOP) is well suited to build
netcentric aerospace simulations

• CADAC++ uses hierarchical structure with abstract base class

• Aerospace vehicles are modeled as derived classes

• Component modules are class functions

• Vehicle objects of CADAC simulation
– 5 DoF model of turbojet driven bank-to-turn vehicle

– Ground target, possibly moving

– Satellite in circular or elliptical orbit

• UAV waypoint guidance

• Targeting by UAV seeker or satellite

• Availability: Open source ♣

20 March 2007 C++ Architecture for UAV Simulations 20

Air Force Research Laboratory

Author’s Resources from AIAA

Building Aerospace
Vehicle Simulations in

C++, 2003

Cruise missile
source code,
low fidelity

Fundamentals of Six DoF
Aerospace Simulation and
Analysis in FORTRAN and

C++, 2004

Missile and
aircraft source

code, high fidelity

Advanced Six DoF
Aerospace Simulation and

Analysis in C++, 2005

Hypersonic vehicle
source code, high

fidelity

Modeling and Simulation of
Aerospace Vehicle

Dynamics, 2nd Edition, 2007

Textbook for
graduate course in
flight mechanics

and M&S

	1_REPORT_DATE_DDMMYYYY: XX-09-2007
	2_REPORT_TYPE: CONFERENCE PAPER AND BRIEFING CHARTS
	3_DATES_COVERED_From__To:
	4_TITLE_AND_SUBTITLE:
A C++ ARCHITECTURE FOR UNMANNED AERIAL VEHICLE SIMULATIONS
	5a_CONTRACT_NUMBER:
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER: 62602F
	5d_PROJECT_NUMBER: 2068
	5e_TASK_NUMBER: 50
	5f_WORK_UNIT_NUMBER: 06
	6_AUTHORS:
Peter H. Zipfel
	7_PERFORMING_ORGANIZATION: Air Force Research Laboratory
Munitions Directorate
AFRL/MNAL
Eglin AFB, FL 32542-6810
	8_PERFORMING_ORGANIZATION: AFRL-MN-EG-TP-2007-7415
	9_SPONSORINGMONITORING_AG: Air Force Research Laboratory
Munitions Directorate
AFRL/MNAL
Eglin AFB, FL 32542-6810
	10_SPONSORMONITORS_ACRONY: AFRL-MN-EG
	1_1_SPONSORMONITORS_REPOR: SAME AS BLOCK 8
	12_DISTRIBUTIONAVAILABILI: DISTRIBUTION A: Approved for public release; distribution unlimited.
Approval Confirmation #AAC/PA 04-04-07-236; dated 4 April 2007.
	13_SUPPLEMENTARY_NOTES: See 'cover page' for pertinent metadata information.
	14ABSTRACT: The C++ computer language is well suited to model multi-vehicle engagements. Its prowess is exemplified by the conversion of a unmanned aerial vehicle simulation from FORTRAN to C++. The new architecture accommodates besides UAVs and moving targets also targeting satellites. Its class structure is outlined, and the communication bus between the encapsulated vehicle-objects is discussed. A generic UAV model with five degrees-of-freedom fidelity is used to demonstrate the interactive features of the simulation. Our experience has shown that C++ is the programming environment of choice for networked simulations.
	15_SUBJECT_TERMS:
	a_REPORT: UNCLASSIFIED
	bABSTRACT: UNCLASSIFIED
	c_THIS_PAGE: UNCLASSIFIED
	17_limitation_of_abstract: SAR
	number_of_pages: 32
	19a_NAME_OF_RESPONSIBLE_P: PETER H. ZIPFEL
	19b_TELEPHONE_NUMBER_Incl:

